TAAT e-catalog for private sector
Request information View pitch brochure

Drought and Virus Tolerant Orange-Fleshed Sweet Potato

Resilient and Nutrient-Rich OFSP for Better Agriculture

The orange-fleshed sweet potato (OFSP) technology is a variety of sweet potato adapted to drought, heat stress, and withstand infections by common viruses affecting the crop. Within an harvest maturity of 90 days, it can escape the risk tuber filling where rainfall is more uncertain toward the end of season. The technology of "Drought and Virus Tolerant Orange-Fleshed Sweet Potato" addresses agricultural challenges related to climate, pests, and viruses, while also promoting food security, nutrition, and economic sustainability in Sub-Saharan Africa.

This technology is TAAT1 validated.


Scaling readiness: idea maturity 7/9; level of use 7/9

Cost: $$$ 2 USD

per kg of vines

ROI: $$$ 30 %

increase in wealth


Open source / open access


Under the climate change effect in Sub-Saharan Africa with uncertain rainfall and various plant infections going with, orange crop production face numerous problem such as:

  • Drought and Heat Stresses: Sub-Saharan Africa faces challenges related to drought and heat, which can negatively impact the cultivation of sweet potatoes.

  • Viral Infections: Common viruses affect sweet potato crops, leading to reduced yields and crop damage.

  • Short Growing Seasons with Uncertain Rainfall: In some regions, a short growing season with unpredictable rainfall patterns poses a risk to tuber filling and crop maturity.

  • Pests and Insects: Sweet potato crops are susceptible to pests and insects like weevils, aphids, and whiteflies, which damage both field crops and stored tubers.


Drought and Virus Tolerant Orange-Fleshed Sweet Potato (OFSP) provide solutions to the problems 

  • Drought and Heat Adaptation: The technology addresses drought and heat stresses by breeding orange-fleshed sweet potato (OFSP) cultivars that are adapted to these conditions. Traits such as early maturation, deep roots, narrow leaves, erect growth, and high vine survival are selected to make OFSP varieties more resilient to drier and warmer climates.

  • Virus Resistance: The technology provides OFSP varieties that are resistant to common sweet potato viruses, including stunt virus (SPCSV) and mottle virus (SPFMV). This resistance is achieved through mass selection based on field observations and genetic marker techniques.

  • Short Growing Season Mitigation: Some hybrid OFSP varieties are developed to reach harvest maturity within just 90 days. This allows them to escape the risk of tuber filling being affected by a shortened duration of the growing season, which is especially beneficial in regions with uncertain end-of-season rainfall.

  • Pest and Insect Resistance: The technology offers OFSP varieties that are resistant to pests and insects like weevils, aphids, and whiteflies, which can damage both field crops and stored tubers.

  • Food Security and Nutritional Enhancement: These drought and virus-resistant OFSP varieties offer food security by ensuring reliable sweet potato yields, even in challenging conditions. They are rich in beta-carotene (provitamin A carotenoid), making them highly nutritious. The beta-carotene content is largely retained during processing, making them suitable for manufacturing healthy foods such as bread, chapatis, cakes, juices, porridge, and more.

  • Economic Opportunities: The technology also highlights the potential to use OFSP peels and tubers for animal feed meal and starch extraction, creating economic opportunities for farmers and communities.

Key points to design your business plan

For Manufacture:

The multiplication of OFSP varieties presents a sustainable solution for farmers facing challenging climates, allowing them to withstand drought, heat, and common viruses. 

To efficiently multiply this technology, it is important to note that OFSP varieties are propagated from seeds, tubers, or vines using familiar procedures. Planting cuttings from vines is a common and easily self-made method. Healthy slips or cuttings are nurtured in beds or water and then planted at an angle in the soil, spaced 50 cm between rows and 30 cm from plant to plant. In Kenya, a bag containing 10 kilograms of OFSP vines is sold for less than USD 20, including transport costs. For one acre (0.3 hectares), you typically need 20 bags of vines, making a total cost of USD 400. 

The multiplication of this technology does not require the purchase of a license. Your potential customers include wholesale distributors of seeds to retailers, as well as development projects, government agencies, and NGOs.


Using OFSP varieties guarantees the cultivation of robust sweet potatoes, offering high yields and nutritional benefits in challenging climates.

As key partners you need sellers of  bouture de OFSP.

You need to know the quantity and the price of OFSP vines. 

You need to estimate the profit realized with the use of the the product


Positive or neutral impact

Adults 18 and over
Positive high
The poor
Positive medium
Under 18
Positive medium
Positive medium

Positive or neutral impact

Climate adaptability
It adapts really well
Adaptability for farmers
It helps a lot
It helps them grow and thrive
Carbon footprint
It doesn't reduce emissions at all
It makes a big difference
Soil quality
It makes the soil healthier and more fertile
Water usage
It uses the same amount of water

Countries with a green colour
Tested & adopted
Countries with a bright green colour
Countries with a yellow colour
Egypt Equatorial Guinea Ethiopia Algeria Angola Benin Botswana Burundi Burkina Faso Democratic Republic of the Congo Djibouti Côte d’Ivoire Eritrea Gabon Gambia Ghana Guinea Guinea-Bissau Cameroon Kenya Libya Liberia Madagascar Mali Malawi Morocco Mauritania Mozambique Namibia Niger Nigeria Republic of the Congo Rwanda Zambia Senegal Sierra Leone Zimbabwe Somalia South Sudan Sudan South Africa Eswatini Tanzania Togo Tunisia Chad Uganda Western Sahara Central African Republic Lesotho
Countries where the technology has been tested and adopted
Country Tested Adopted
Kenya Tested Adopted
Mozambique Tested Adopted
Uganda Tested Adopted

This technology can be used in the colored agro-ecological zones. Any zones shown in white are not suitable for this technology.

Agro-ecological zones where this technology can be used
AEZ Subtropic - warm Subtropic - cool Tropic - warm Tropic - cool

Source: HarvestChoice/IFPRI 2009

The United Nations Sustainable Development Goals that are applicable to this technology.

Sustainable Development Goal 1: no poverty
Goal 1: no poverty
Sustainable Development Goal 2: zero hunger
Goal 2: zero hunger
Sustainable Development Goal 8: decent work and economic growth
Goal 8: decent work and economic growth

To cultivate the drought and virus-tolerant orange-fleshed sweet potato varieties (OFSP), the following steps are required:

  1. Choose drought and virus-tolerant OFSP varieties for propagation. Propagation material can be obtained from seeds, tubers, or vines.

  2. The same procedures as non-adapted cultivars can be followed for propagation.

  3. Cuttings from vines are the most commonly used planting material. Ensure the cuttings are healthy and disease-free.

  4. Plant slips from tubers or cuttings from vines in nursery beds or by placing the base of the stem in water.

  5. Select healthy slips or cuttings for planting. Ensure they have well-developed roots and shoots.

  6. Plant the healthy slips or cuttings in the main field. Insert them at an angle into the soil. Maintain a spacing of 50cm between rows. Space the plants 30cm apart from each other.

Last updated on 22 May 2024