Logo
TAAT e-catalog for government
https://e-catalogs.taat-africa.org/gov/technologies/flour-milling-and-blending-systems-flour-milling-and-blending-systems
Request information View pitch brochure

Flour Milling and Blending Systems Flour Milling and Blending Systems

Produce a premium wheat flour close to production areas

Flour milling and blending systems are small-to large-sized milling and blending systems, available from local and international manufacturers that allow production of premium wheat flour close to production areas. Small-scale equipment is relatively simple to install but require reliable sources of electricity. Solar power is an option as this technology is particularly advantageous in more remote locations.

2

This technology is TAAT1 validated.

7•7

Scaling readiness: idea maturity 7/9; level of use 7/9

Positive or neutral impact

Adults 18 and over
Positive high
The poor
Positive low
Under 18
Positive low
Women
Positive high

Positive or neutral impact

Climate adaptability
It adapts somewhat well
Adaptability for farmers
It helps a lot
Biodiversity
It doesn't hurt them
Carbon footprint
It doesn't reduce emissions at all
Environment
It doesn't make a difference
Soil quality
It doesn't harm the soil's health and fertility
Water usage
It uses a little less water

Problem

The problems addressed by the technology of Flour Milling and Blending Systems,  include:

  • Quality and Market Accessibility: Manual techniques for producing wheat flour used in many Sub-Saharan African communities do not meet quality standards preferred by consumers, thereby limiting market opportunities.

  • Transport Costs and Shelf Life: There is a challenge regarding the costs associated with transporting wheat from farms to factories. Additionally, the limited shelf life affects access and supply to markets, food processors, and manufacturers on local and national scales.

  • Competitiveness and Self-Sufficiency: African wheat farmers face challenges in competing with imported products due to the limitations of manual techniques and the quality of flour produced. There's a need to enhance their competitiveness and achieve self-sufficiency in wheat-related products.

Solution

The technology of Flour Milling and Blending Systems offers several solutions to these challenges:

  • Improved Flour Production: It allows for the production of premium wheat flour using milling and blending systems of various sizes, ensuring quality that meets consumer standards.

  • Reduction in Transport Costs: By allowing the processing of wheat into flour close to production areas, it reduces transportation costs from farms to factories.

  • Longer Shelf Life: Flour milling and blending enable longer shelf life for the produced flour, facilitating better access and supply to markets and various food manufacturers.

  • Boosting Local Competitiveness: Building capacity in rural communities to mill and blend wheat flour boosts local output, adds value, and improves the competitiveness of local producers, enabling them to rival imported products.

  • Enhanced Business Development: Flour milling and blending technologies promote business development in rural communities by allowing for better supply chain management and trade opportunities.

  • Improved Equipment and Self-Sufficiency: Flour milling technologies offer a wide range of equipment suitable for different wheat processing stages, fostering self-sufficiency in food production.

  • Adaptability and Widespread Deployment: The technology's simple equipment setups, adaptable power sources (electricity, diesel generators, solar panels), and ease of installation allow for widespread deployment, especially in areas with limited storage facilities, poor infrastructure, and weak market links.

Key points to design your project

This technology aims to reduce the high time, energy and labor requirements associated with traditional grinding, making them more appealing to consumers. It benefits both consumers and farmers by reducing transport costs for farmers and contributing to food security and responsible consumption, with positive impacts on gender empowerment, climate, and Sustainable Development Goals (SDGs).

This technology can be incorporated into nutrition projects as a job opportunity for young and women in food processing and supermarkets.

To integrate this technology into your project, create a list of project activities and prerequisites, including:

  • Awareness raising with farmers, agri-food companies and investors about the business opportunities created by the technology, 

  • Formulating appropriate product standards, packaging sizes and prices based on consumer demand, 

  • Identifying profitable, durable and equitable models for production and marketing flour products to local, regional and international markets, 

  • Establish reliable supply of high quality grain to processing plants through nucleus farming or subcontracting,

  • Set up equipment and production lines that make efficient use of energy and labor,

  • Training operators and workers on safety and quality adherence throughout the manufacturing process.

- Estimate the quantity of Milling and blending systems needed for your project.

- As the technology is available in  Ethiopia, Kenya, Mali, Niger, Nigeria, Senegal, Sudan, Tanzania, Zimbabwe, include the delivery cost to the project site and account for import clearance and duties if relevant.

Communication support for the technology should be developed (flyers, videos, radio broadcasts, etc.)

For better optimization of this technology, it is recommended to associate this technology with varieties for Better Nutrition and Stress Resistance

To implement the technology in your country, you could collaborate with Food processor companies.

More

Cost: $$$ 3,500 USD

For small flour mill machine with a capacity of 300 - 500 kg flour per hour

ROI: $$$ 12—15 %

increase in milling yield

38,000 USD

Base price for a fully automatic flour mill with a capacity of 30 ton flour per day

80—82 %

maximal recovery of flour

18—20 %

maximal recovery of bran

IP

Open source / open access

Countries with a green colour
Tested & adopted
Countries with a bright green colour
Adopted
Countries with a yellow colour
Tested
Egypt Equatorial Guinea Ethiopia Algeria Angola Benin Botswana Burundi Burkina Faso Democratic Republic of the Congo Djibouti Côte d’Ivoire Eritrea Gabon Gambia Ghana Guinea Guinea-Bissau Cameroon Kenya Libya Liberia Madagascar Mali Malawi Morocco Mauritania Mozambique Namibia Niger Nigeria Republic of the Congo Rwanda Zambia Senegal Sierra Leone Zimbabwe Somalia South Sudan Sudan South Africa Eswatini Tanzania Togo Tunisia Chad Uganda Western Sahara Central African Republic Lesotho
Countries where the technology has been tested and adopted
Country Tested Adopted
Ethiopia Tested Adopted
Kenya Tested Adopted
Mali Tested Adopted
Niger Tested Adopted
Nigeria Tested Adopted
Senegal Tested Adopted
Sudan Tested Adopted
Tanzania Tested Adopted
Zimbabwe Tested Adopted

This technology can be used in the colored agro-ecological zones. Any zones shown in white are not suitable for this technology.

Agro-ecological zones where this technology can be used
AEZ Subtropic - warm Subtropic - cool Tropic - warm Tropic - cool
Arid
Semiarid
Subhumid
Humid

Source: HarvestChoice/IFPRI 2009

The United Nations Sustainable Development Goals that are applicable to this technology.

Sustainable Development Goal 2: zero hunger
Goal 2: zero hunger
Sustainable Development Goal 8: decent work and economic growth
Goal 8: decent work and economic growth

  1. Conduct Market Research: Conduct thorough market research to understand the market needs and identify viable business models.

  2. Consult Experts for Location: If uncertain about the location, seek advice from experts to avoid investing in the wrong place.

  3. Analyze Investment Requirements: Perform a comprehensive analysis of investment needs, considering capital equipment, staff wages, and other fixed and variable costs.

  4. Identify Financing Strategies: Based on the analysis, identify financing options, including loans, personal funds, or investors.

  5. Secure Funding: Once financing is secured, proceed to purchase the necessary machines for cleaning, annealing, and milling.

  6. Construct the Processing Line: Build the flour processing line based on professional advice for optimal installation.

  7. Optimize Electricity Costs: Minimize electricity costs to ensure profitability and maximize net margins during operations.

  8. Implement Quality Assurance: Ensure continuous quality assurance at the flour mill to meet market standards regarding gluten content, sedimentation, and index values of the product.

Last updated on 22 May 2024