

Field water management and irrigation practices in rice production in West Africa

Introduction

Efficient water management in rice cultivation is essential for improving crop yields, conserving water resources, and ensuring the sustainability of the production system. There are different components of field water management and irrigation practices in irrigated rice production. This fact sheet provides basic guides in efficient water management and irrigation for better productivity in rice production.

Water use and productivity

Rice is highly water-intensive, requiring around 3,000 to 6,000 liters per kilogram of grain produced. Improved irrigation techniques can reduce water use by 30-40% without compromising yield.

Irrigation method

Basin and check basin

- Basin irrigation is practiced where land is relatively flat.
- The flatter the surface of the land, the easier it is to construct basins. Some leveling may be required on uneven lands to ensure uniform water distribution.
- Basins can also be built on terraced slopes.
- The construction of structures for surface irrigation basins and check basins is done after the land preparation, including land leveling (Figure 1).

These structures require labor cost, depending on the prevailing costs within the farm environment.

Field leveling:

Field leveling using essential tools (hoes, planks and lines) and, where available, efficient modern technology such as laser guided leveler technology is a critical practice for lowland rice prodution. Leveling improves water distribution efficiency, reducing water use by 20-30%. It ensures uniform water depth and prevents waterlogging in the field areas. Land leveling is critical for efficient irrigation in lowland rice production.

Saturated Soil Culture (SSC)

Instead of continuously flooding the fields, maintaining the soil in a saturated state can save water, improve oxygen availability to the roots and tillering, and boost rice yields by up to 10-15%.

Irrigation scheduling

- A proper irrigation schedule based on the crop's growth stage and soil moisture levels can enhance water use efficiency by 15-20%.
- Real-time data from alternate wetting and drying tubes can guide more precise irrigation.

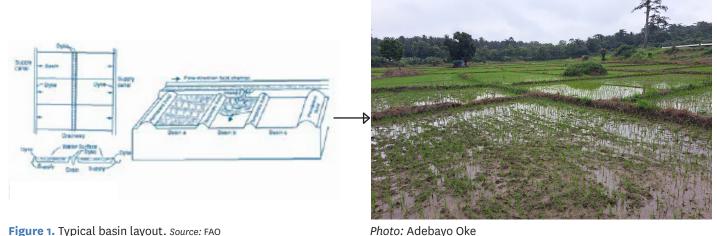
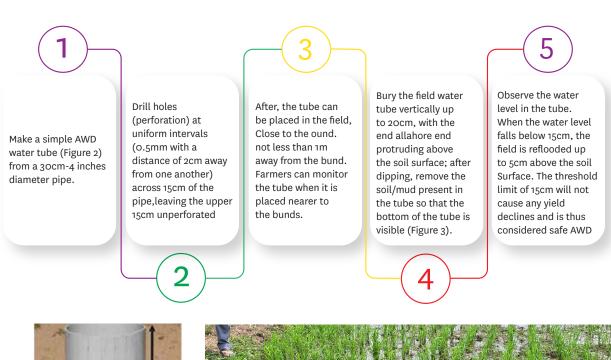


Figure 1. Typical basin layout. Source: FAO


Water application

Water application in rice production must be adequate throughout the crop cycle, especially at the critical stages of development.

- i. Irrigation water is released in the basin for puddling and leveling, which is essential to provide a suitable environment for rice transplanting.
- ii. After transplanting, water levels should be around 3 cm initially, gradually increasing to 5-10 cm (with increasing plant height), and remain there until the field is drained 7-10 days before harvest.
- iii. For direct wet-seeded rice, the field should be flooded only when the plants are large enough to withstand shallow flooding (3-4 leaf stage).
- iv. The number of drainages and days the field is non-flooded will vary based on the soil type and climate realities.
- v. Excess water may need to be drained from the field shortly before applying fertilizer.

Best practices for water management

- 1. **Alternate Wetting and Drying (AWD):** AWD is a proven water-saving technique that allows fields to dry for a few days before irrigation. This method can reduce water consumption by up to 25% and improve nitrogen uptake, resulting in higher yields, and reduce the emission of greenhouse gases such as methane.
- 2. **Field preparation:** Bund management well-constructed and maintained bunds (field boundaries) prevent water seepage and allowing water retention.
- 3. Weed control: Effective weed management reduces competition for water, ensuring that more water is available for rice crops.

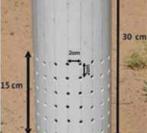


Figure 2. AWD Tube.

Figure 3. Installation of AWD Tube.

Environmental and economic benefits

- 1. Reduction in methane emissions: Improved water management practices such as AWD can lower methane emissions by up to 48% by reducing the continuous flooding of rice paddies, contributing to climate change mitigation.
- 2. Cost savings: Farmers can reduce irrigation costs by 10-30% through improved practices, lowering energy use for pumping water and reducing input costs.
- 3. Improved crop resilience: Proper water management enhances rice crops' resilience to droughts and other water-related stresses, leading to more consistent yields.

Water quality of irrigation water sources

- Water quality is a critical factor in managing irrigation systems for rice production.
- Rice is a water-intensive crop, and the quality of water used for irrigation directly affects yield and soil health.
- Understanding critical water quality parameters helps ensure sustainable rice cultivation, minimize environmental impacts, and maintain soil fertility.

Sources of water for irrigation

Surface water (rivers, lakes, reservoirs)	Groundwater (wells, boreholes)	Recycled or wastewater
	ADVANTAGES	
Generally low in salt and toxins, rich in dissolved oxygen, and easy to manage for rice paddies.	Consistent supply and availabilty during dry periods.	Reduces pressure on freshwater sources and conserves water in water-scare regions.
	CHALLENGES	
Vulnerable to seasonal fluctuation and contamination from agricultural runoff and industrial pollutants.	Risk of high salinity, elevated SAR, and contamination with toxic elements such as arsenic and flouride, especially in regions with shallow acuifers.	Requires careful treatment to avoid salinity isuues, pathogen contamination, or the presence of harmful chemicals (e.g., heavy metals).

Key water quality parameters in rice irrigation

1. Salinity (Electrical Conductivity, EC): Optimal range: < 0.75 dS/m for rice

Impact: High salinity causes osmotic stress, which leads to reduced water uptake, stunted growth, and lower yields. Prolonged use of saline water can degrade soil structure and lead to field salinization.

2. Sodium Adsorption Ratio (SAR): Optimal range: SAR < 6 for good water quality

Impact: High salinity causes osmotic stress, which leads to reduced water uptake, stunted growth, and lower yields. Prolonged use of saline water can degrade soil structure and lead to field salinization.

3. pH levels: Optimal range: 5.5-7.5.

Impact: Extremely acidic (< 4-5) or alkaline (> 8.5) water can affect nutrient availability, microbial activity, and root function. Acidic water leads to toxicities (e.g., aluminum), while alkaline water can cause micronutrient deficiencies such as zinc and iron.

4. Dissolved Oxygen (DO): Optimal range: > 5 mg/L for healthy crop growth

Impact: Low dissolved oxygen levels, especially in stagnant or poorly managed fields, can lead to anaerobic conditions, affecting root respiration and microbial activities in the soil.

5. Nutrient content.

Impact: Nitrogen, phosphorus, and potassium: Adequate levels are essential for healthy crop growth, but excessive nutrients, especially nitrogen, can lead to lodging (weak stems), poor grain filling, and environmental pollution.

6. Toxic elements: Common toxins: Arsenic (As), Boron (B), Iron (Fe), Manganese (Mn), Aluminum (Al)

Impact: These elements, particularly arsenic, are toxic to rice plants at elevated levels. Arsenic contamination, often associated with groundwater, can accumulate in rice grains and pose health risks to consumers.

Management: Flushing fields with good-quality water, selecting salt-tolerant rice varieties, and improving drainage systems.

Management: SAR is an index of sodium, calcium and magnesium levels in irrigation water. High SAR indicates the possibility of sodium accumulation in soil, affecting soil structure and permeability. This can cause poor water infiltration and drainage issues in rice

Management: Liming to raise pH if too acidic or applying sulfur or acidifying fertilizers to lower pH if too alkaline.


Management: To restore oxygen levels, aerate water or allow drying periods (alternate wetting and drying methods.

Management: Monitor nutrient levels in irrigation water and adjust fertilization practices to avoid nutrient imbalances.

Management: Adopt the following measures: Soil and water testing, use of organic amendments, alternative irrigation practices, phytoremediation, crop rotation and soil management, and breeding and selection of varieties.

Best Practices for Water Quality Management in Rice Irrigation

Test water sources for salinity, pH, SAR, nutrient levels, toxic elements before & during the growing season to adjust management strategies accordingly.

In areas prone to salinity issues, use rice varieties that are genetically adapted to tolerate higher salt levels, reducing yield losses.

Establish buffer zones along irrigationchannels or paddies to filter runoff and prevent the entry of pollutants into water systems used for irrigation.

Ensure effective field drainage to prevent the accumulation of salts, toxins, or excess water that can negatively impact plant growth.

This Fact Sheet was developed for the Technologies for African Agricultural Transformation – Water EnablerCompact (TAAT-WEC) project (TAAT-II Rice), which was funded by the African Development Bank (AfDB)

Authors:

Dr. Adebayo Oke, Regional Researcher - Agricultural Water Solutions, International Water Management Institute (IWMI), Accra, Ghana Dr. Paschal B. Atengdem, Consultant, Development Sociologist, Communication for Development, Accra, Ghana Dr. Birhanu Zemadim, Deputy Country Representative (IWMI-Ghana) & Senior Researcher - Water and Land Management Expert, IWMI, Accra, Ghana

Dr. Olufunke Cofie, Africa Director for Research Impact, IWMI, Accra, Ghana

Citation: Oke, A.; Atengdem, P. B.; Zemadim, B.; Cofie, O. 2025. *Field water management and irrigation practices in rice production in West Africa*. Colombo, Sri Lanka: International Water Management Institute (IWMI). 4p.

Copyright © 2025, by IWMI. All rights reserved. IWMI encourages the use of its material provided that the organization is acknowledged and kept informed in all such instances.

For more information on water management in rice systems, visit: http://www.iwmi.org and http://www.knowledgebank.irri.org/org/step-by-step-production/growth/water-management or contact: Dr. Adebayo Oke; Email: a.oke@cgiar.org

Disclaimer:

This publication has been prepared as an output of the Technologies for African Agricultural Transformation-Water Enabler Compact(TAAT-WEC) project (TAAT II). Responsibility for editing, proofreading, layout, and opinions expressed, as well as any errors, lies with the authors and not the institutions involved.

The International Water Management Institute (IWMI) is an international, research-for-development organization that works with governments, civil society and the private sector to solve water problems in developing countries and scale up solutions. Through partnership, IWMI combines research on the sustainable use of water and land resources, knowledge services and products with capacity strengthening, dialogue and policy analysis to support implementation of water management solutions for agriculture, ecosystems, climate change and inclusive economic growth. Headquartered in Colombo, Sri Lanka, IWMI is a CGIAR Research Center with offices in 15 countries and a global network of scientists operating in more than 55 countries.

International Water
Management Institute (IWMI)

Headquarters

127 Sunil Mawatha, Pelawatte, Battaramulla, Sri Lanka

Mailing address: P. O. Box 2075, Colombo, Sri Lanka

Tel: +94 11 2880000 Fax: +94 11 2786854 Email: iwmi@cgiar.org

www.iwmi.org